量子产率是***个基本的光物理参数,它描述了***个样品的荧光效率,被定义为发射的光子数量与样品吸收的光子数量的比率。准确和可靠的量子产率测量对包括显示材料、太阳能电池、生物成像和药物开发等应用非常重要。
有两种测量量子产率的方法:绝对法和相对法。在绝对法中,量子产率是用积分球直接测量的,而在相对法中,未知样品的荧光强度与标准样品的荧光强度相比较,以计算出未知样品的量子产率。爱丁堡FS5荧光光谱仪(图1)通过相对法测量2-氨基吡啶(2AMP)的量子产率。2AMP在硫酸(H2SO4)中的量子产率以前曾被用作紫外-可见光范围内的参考标准。2AMP的量子产率在1968年测量为60%1,在1983年测量为66%2。这些文献中的量子产率参考值现在已经有几十年的历史了,这里我们用1M H2SO4中的硫酸奎宁(QBS)作为参考标准,用爱丁堡FS5荧光光谱仪对2AMP在1M H2SO4中的量子产率进行了重新测量和评估。
公式1
其中下标S和R分别表示待测样品(2AMP)和参比样品(QBS)。Φ是量子产率,I是综合荧光强度,A是激发波长下的吸光度。n是平均发射波长下用于待测样品和参比样品的溶剂的折射率。本文中,2AMP和QBS都使用了相同的溶剂(1M H2SO4),所以这项值为1。
为了提高计算出的量子产率值的准确性和精确性,***好的方法是准备和测量几个不同浓度的待测样品和参比样品。通过绘制2AMP和QBS的I与1-10-A的关系,可以用斜率(GradS和GradR)来计算量子产率(公式2)。这种方法可以防止潜在误差,如染料聚集,在较高的浓度导致的非线性。公式2
准备五种不同浓度的2AMP 1M H2SO4的溶液和五种QBS在1M H2SO4中的溶液。使用FS5荧光光谱仪测量吸收和荧光光谱,该荧光光谱仪配备有150W氙灯、PMT-980检测器和SC-05比色皿支架。
***先,通过使用FS5的内置透射检测器测量吸收光谱来确定五个浓度2AMP和QBS溶液的吸光度值。在激发波长(310 nm)下,溶液的吸光度值被保持在0.1以下,以尽量减少内滤效应的影响,吸光度值范围在0.008和0.098之间。2AMP和QBS的归***化吸收光谱显示在图2a中。图2:(a)2AMP(绿色)和QBS(紫色)的归***化吸光光谱。(b) 2AMP(绿色)和QBS(紫色)的归***化荧光光谱。(c) 不同浓度的2AMP的荧光光谱。C1溶液是浓度***低的(在310nm处的吸光度=0.01),C5是浓度***高的(在310nm处的吸光度=0.098)。所有光谱都是在爱丁堡FS5荧光光谱仪获得。
接下来,采集了5个2AMP和QBS溶液的荧光光谱。荧光光谱仪检测的荧光强度取决于激发波长、激发和发射带宽以及积分时间。通过保持这些参数相同,2AMP和QBS的综合荧光强度、IS和IR可以比较。实验参数是λex=310 nm,激发和发射带宽分别设置为3 nm和0.5 nm,步长为1 nm,积分时间为0.5 s。图2b显示了2AMP和QBS的归***化荧光光谱。每个浓度的2AMP的荧光光谱被合并到Fluoracle中***张图(图2c)。公式2中的斜率GradS可以使用Fluoracle的线性分析功能从图2c中的2AMP光谱中计算出来,如图3所示。为了计算GradS校准参数被设置为面积(橙色框),变量名称被设置为1-10-A(绿色框)。按 "应用 "计算面积(综合荧光强度)。然后输入从吸收光谱中得到的每种浓度的2AMP的吸光度项(1-10-A)值(浅蓝色框)。图3:Fluoracle中图2c的线性分析
校准类型为线性,并勾选了通过零点的曲线(深蓝色框)。荧光强度与吸光度的积分项与线性拟合***起绘制在屏幕的右下方。曲线的斜率(GradS)为K1(红色框)。然后对五个QBS光谱重复同样的过程来计算斜率GradR。两条曲线及其计算的斜率都显示在图4中。图4:综合荧光强度与2AMP和QBS的吸光度的关系
QBS在H2SO4中的量子产率的文献值为ΦR=56.1%4。然后用公式2计算出2AMP在H2SO4中的量子产率为64.3%,这个值与以前报道的60%和66%的值***致。结 论
爱丁堡FS5荧光光谱仪用相对法测定2AMP在1M H2SO4中的量子产率。通过FS5 Fluoracle软件的线性分析功能,数据分析变得简单。使用QBS作为参考标准,计算出2AMP的量子产率为64.3%。这个数值与以前的文献报告相***致,表明FS5可以进行准确和可靠的相对量子产率测量。
(文章来源于仪器网)
(来源: )