【行业应用】高光谱检测技术助力矿业领域研究
- 2024-03-27 09:29:20
背景
experimental design试验设计 本研究所用的钛铁矿原料来自中***四川(由攀枝花学院提供)。在这项工作中,所有样品均在实验室球磨机(南大QM-3SP2行星式)中研磨,之后以200目粒径进行筛分。使用Innov-X Delta DS6000手持式XRF装置测定两份原料的钛品位分别约为3.6780%和31.4530%。为了校准模型的开发提供广泛的钛浓度变化范围,用电子分析天平(Sartorius BSA224S)将两份原料以1%(Ti)的梯度制备5份,在球磨机中分别以300转/分钟的速度充分混合30分钟,再次使用XRF测定制备的钛铁矿粉末样本的多组分品位。矿石样本制备完成后,通过GaiaField-N17E-HR近红外高光谱相机(江苏科技有限公司)采集矿石样本高光谱图像。 提取光谱数据 图1b(蓝色线条)为HSI捕获到的原始平均光谱曲线,可以明显看到在整个光谱区域没有特异的波峰波谷。为了找出峰谷突出的区域,分析了光谱波段之间的相关性。对于维度为(x, y, λ)的高光谱数据,转换为(z = x × y, λ),并对z进行相关性分析,结果如a所示。图中显示红色区域的波段在整个波段中占比94.34%,其余颜色区域总共占比5.66%。为了***大限度地保留 “纯净数据”,防止其它颜色区域数据的干扰,通过查询颜色栏数据并结合波段得知红色与其余颜色区域的相关性分界点为0.8(波段:483)。随后,将相关性小于0.8的30个波段从数据分析中剔除,从而消除了1685.47-1735.34 nm的光谱区域。得到的光谱曲线如图1b(红线)所示。该过程获得的光谱数据(150×483)用于后续的模型建立和分析。 (a)波段相关性分析 (b)原始平均光谱 Conclusion结论 通过XRF检测出了钛铁矿中品位较高的9种金属元素,根据其品位高低对样本进行分组。其中,1%及以上为主要品位(Ti, Fe),0.02-1%为次要品位(V, Mn, Co, Cu),0.02%及以下为微量品位(Zn, Zr, Pb)。钛铁矿中各组分品位的统计分布如表1所示,可以清晰看出,不同组分的品位有明显的差异,这对回归模型的建立至关重要。 表1 钛铁矿样品品位测定的统计分析 ▼ 钛铁矿样本的光谱反射率值在0.03 - 0.27之间,证实粉状钛铁矿的整体反射率较低,并随品位的增加而降低。图1b显示在NIR区域,该钛铁矿的光谱特征分别在940nm、1020nm和1300~1650nm处出现了波谷。具体地,光谱反射率值在940 nm处达到谷值,随后急剧下降,这主要归因于O-Ti-O的拉伸和变形。该钛铁矿较宽的吸收波段主要位于1300 ~ 1650 nm,Izawa指出这是由八面体配位的亚铁在此附近产生晶体场跃迁分裂而引起的。 采用SavitZky***Golay卷积平滑法(简称SG平滑算法)、多元散射校正算法、包络线去除算法、二阶导数算法、多元散射校正+SG平滑算法等5种预处理方法对原始光谱数据进行处理。基于树突网络模型对比原始光谱数据,探索出HSI光谱数据的***佳预处理方法,结果如表2所示。预测集中,与原始数据相比,MSC+SG方法下的各指标R2P提高了5.88%,RMSEP降低了34.39%,RPD和RPIQ分别提高了28.86%和38.93%。 表2 DD模型下不同预处理方法的结果 ▼ 为直观地看到各预处理方法对数据的改变,绘制了HSI采集的钛铁矿样本三维原始光谱如图2a所示,图2b-d所示三维光谱为CR、SD、MSC+SG预处理的结果。SG预处理后的光谱反射率曲线趋势与钛铁矿原始光谱反射率曲线相似。MSC和MSC+SG预处理的光谱变化不大,但有效地消除了光谱散射,突出了光谱峰谷区域。相比之下,CR和SD预处理后的光谱变化明显,两种方法的光谱反射率范围差异过大,导致原始数据的***些特征丢失。然而,***佳MSC+SG预处理图谱显示,光谱特征区域显著增强,反射率数据得以明显集中,有效增强了光谱特征信息。因此,MSC+SG可以作为***种有效的光谱预处理方法来预测钛铁矿多组分的品位信息。 ▲ 图2 HSI采集钛铁矿样品的三维光谱:(a) RAW光谱;(b) CR预处理后的光谱;(c) SD预处理后的光谱;(d) MSC + SG预处理后的光谱。 采用t分布式随机邻居嵌入、区间偏***小二乘法-VCPA-IRIV和区间偏***小二乘法-VIP-IRIV三种不同的降维算法对近红外光谱数据进行不同程度地约简。图3为不同降维算法的数据分布情况。t-SNE改变了原始数据集,经该方法输出的高维(483维)原始光谱数据特征映射到了三维平面之上。特征选择方法iPLS-VCPA-IRIV和iPLS-VIP-IRIV三步混合策略算法提取的波长数分别为28和38,比原始维度相应减少了94.19 %和92.12 %。总的来说,三种降维算法有效地消除了原始光谱矩阵中的冗余信息,为减少计算时间和确保精度奠定了基础。 表3为钛铁矿样本中各组分的VIF检验分数。在相关程度上,L代表相关度低,H代表相关度高。对于每个变量,VIF得分均不超过2,说明各变量之间的共线性现象不突出,相关程度符合研究要求。因此,可以采用数据预处理,降维等方法对各组分品位数据进行处理,并参与模型预测。 表3 钛铁矿样品中各组分的VIF指数 ▼ 提取矿石样本的颜色特征是否可以用于构建品位预测模型,还有待进***步验证。基于钛铁矿多组分品位(平均品位)与颜色特征参数进行Pearson相关性分析(图4)。从图中可以看出,除S颜色通道的特征参数与多组分品位存在弱相关(R < 0.3)外,其余颜色特征参数对于品位预测模型都是合理的。造成这种现象的原因是,钛铁矿本身是***种不透明矿物,而HSI采集到的图像过于单***,整体颜色偏暗。 ▲ 图4 品位和颜色特征参数的皮尔逊相关性分析 多元回归模型DD、PLSR和SSA-KELM可能对两个维度中某***特定数据集的表现***好,但基于多组分品位模型稳定性的需求,BPNN才是***佳的模型选择。图5为基于BPNN两个效果***好的光谱和图像数据结果,可以看出,两个数据的指标变化差异不大,证实了BPNN模型即使在小样本量下也具有很强的泛化性能和鲁棒性。综合评价表明,BPNN对两组数据集的预测都是成功的,但利用图像数据预测钛铁矿多组分品位的可靠性略低于利用特征选择的光谱数据。 (a) iPLS-VCPA-IRIV选择的光谱数据 (b)全波长图像数据 从iPLS-VCPA-IRIV特征选择的拟合光谱数据图(图6)可以看出,在校正集中,钛铁矿多组分品位都均匀准确地分布在理想曲线上。然而,对于预测集来说,明显可以看出来的是,除拟合良好的主要品位(Ti、Fe)和次要品位(V、Mn、Co、Cu)外,微量品位(Zn、Zr、Pb)的拟合似乎并不令人满意。因此,在下***步工作中,可以对少样本量下矿石内部微量品位的变化进行更深入的研究。 (a) 校准集表现 (b)预测集表现 本研究从光谱和空间维度出发,探讨了HSI与化学计量学相结合预测钛铁矿多组分品位的能力。 PRODUCT 产品推荐 ▲ GaiaField 便携式成像光谱系统
主要功能: ● ***键实现自动曝光、自动调焦、自动扫描速度匹配、自动采集并保存数据 ● 辅助取景摄像头实现对拍摄区域的监控 ● 内置电池,可连续工作4小时以上 ● 数据预览及校正功能:辐射度校正、反射率校正、区域校正、镜头校准、均匀性校准 ● 镜头可更换 ● 只需***根USB线实现连接通信 ● 数据格式完美兼容Evince、Envi、SpecSight等数据分析软件 ● 支持Win7~10-32位或64位系统 ● 高配版可内置微型处理器,利用手机、Ipad通过Wifi热点远程控制
(文章来源于仪器网)